Parameter Identification for Nonlinear Ill-posed Problems
نویسندگان
چکیده
Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can identify the parameter effectively. KeywordsParameter Identification, Ill-Posed, Homotopy Regularization, Homotopy Parameter
منابع مشابه
Iterative methods for nonlinear ill-posed problems in Banach spaces
In this paper, we study convergence of two different iterative regularization methods for nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration, the other one the iteratively regularized Gauss– Newton method with an a posteriori chosen regularization parameter in each step. We show that a discrepancy principle as a stopping rule renders these iteration schemes...
متن کاملApplications of the Modified Discrepancy Principle to Tikhonov Regularization of Nonlinear Ill-posed Problems∗
In this paper, we consider the finite-dimensional approximations of Tikhonov regularization for nonlinear ill-posed problems with approximately given right-hand sides. We propose an a posteriori parameter choice strategy, which is a modified form of Morozov’s discrepancy principle, to choose the regularization parameter. Under certain assumptions on the nonlinear operator, we obtain the converg...
متن کاملA convergence analysis for Tikhonov regularization of nonlinear ill-posed problems
In this paper we consider the a posteriori parameter choice strategy proposed by Scherzer et al in 1993 for the Tikhonov regularization of nonlinear ill-posed problems and obtain some results on the convergence and convergence rate of Tikhonov regularized solutions under suitable assumptions. Finally we present some illustrative examples.
متن کاملAn Efficient Linear Solver for Nonlinear Parameter Identification Problems
In this paper, we study some efficient numerical methods for parameter identifications in elliptic systems. The proposed numerical methods are conducted iteratively and each iteration involves only solving positive definite linear algebraic systems, although the original inverse problems are ill-posed and highly nonlinear. The positive definite systems can be naturally preconditioned with their...
متن کاملA Statistical Method for Regularizing Nonlinear Inverse Problems
Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...
متن کامل